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INTRODUCTION

The process introduced in this paper serves as a useful model
for the study of random wave propagation problems and certain
areas of electronics and biochemistry. An initial phenomenon,
v modeled as a Poisson point process whose effect is described
by a spherically invariant random variable C is observed
through a causal linear filter whose impulse response is G.

The observed process has the form

Z(w, t) = ) Cijlu) Glt - Tylw)), == <t <+
j—w
where 75 is the time of the j the jump of the original Poisson

process.

Spherically invariant laws are mixtures of normal ones
. anA have nravianely cerved in the studv of wave nropacation
problems
The first section of the paper contains a characterization of
such laws based on Choquet's representation theorem [4] and
some examples (the exponential and the student probability

laws).

In the second part of the paper one finds the characte-

ristic function of the process 2 defined above, which is
strongly stationary. This is used in the third part to show
that the odd moments of 2 vanish and to compute the moments of

order two and four.

The identification of the process Z requires that the
. impulse response G be estimated knowing the moments of Z. This
can be done if the filter is assumed to have minimal phase, a

concept frequently used in automation (cf [6]).
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The fourth part of the paper presents an algorithm for

approximating G based on the Fourier transform.

The final and fifth'part of the paper is devoted to the
estimation of the parameter ) of the original Poisson process
and of the mixing law p which yields the spherically invariant
one used in the model. Here again estimation is by the method
[ of moments : the estimator of A is obtained on the solution of
a linear equation and to estimate u one assumes it is a convex
combination of point masses and adjusts the classical solution
of the moment problem to the case of a support contained in

the positive half-line.
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1 - CHARACTERIZATION AND EXAMPLES OF SPHERICALLY INVARIANT

RANDOM VARIABLES

The problem considered here is that of determining a class
of spherically invariant distributions (see [5)]) on the real
line. The extreme points of this set are the Gaussian laws P,
with density :

ap - X

1 2
M == (x) = e 20
dx ov2n

where dx is the Lebesgue measure and one wants to characterize
the closed convex set generated by the family
{p,, o > 0}. In terms of characteristic functions, one wants

to solve the equation :

a?u?
2

+0

w(da) = [ e¥* p(ax)

-n

(2) ou) = [ e

where ¢ is the characteristic function of a spherically inva-

riant distribution P for u if ¢ is given and for ¢, if u is.

I.1 - Lemma
If P is spherically invariant’ P is symmetric with respect

to the origin.

Proo§ : If P is spherically invariant, then by definition or

reference

a2u?
- =

olu) = [/ e pax) = [ e u (da)
o

Since ¢(u) = ¢(~ u), P is invariant under the transfor-

mation x » - x. ®

* Some author takes a larger class than the one considered here




We know that ¢(0) = 1 (then u(R)) = 1) and that ¢ is

continuous in a neighborhoddof zero.

1.2 - Lemma :

b If P is spherically invariant, there exists ¢ in
c(]o, =[) (with derivatives of any order in ]0, =[) such

that for every real u
(3) ¢(u) = y(u?)

Proof : Define y by the relation
a!
- v
viv) 8 e %2 aua)
Re

Then for every positive v and natural integar n
l : . a2

n - %T v
e dp(a) € =

| (-5

LYY

so that ¢y may be differentiated arbitrarily often in order

! to obtain :
at

] n n - v
4 dylv) o p m2h e T Tauqa) g
‘ av .

2
The transformation defined by T ? as b 8 %r is a

! bijection of TR+. Let v = p o T-l, the image v of u by T.

Then ¢(v) = [ eV au(b) ,
R ‘

! 1.3 - Theorem : ([4] p. 237) :

There exists a positive measure v on R* such that

Yv>0 wivi = ePVaum
m'.'
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if and only if
n
v is real valued on R _, ¢ is & andtn o0 (- " Q_% > 0
dv

1.4 - Theonrem :

P is spherically invariant on (R,fi) if and only if

(4) P is symmetric uwith respect to the origin

(5) the characteristic function ¢ of P belongs to %°(ﬁt\{o})

and the function ¢, defined by

(6) YueR ¢(u) & ¥ (u?) is such that

n
Voen Vv >0 (- " 8¥ (v) 50
dv

Proog : If (4), (5) and (6) hold, one has, by 1-3, that

(M wv) = [ eV dub
R,
This can be written as
a?u?
¢(u) = p(u?) = [ e 2 4u(a) which, as we know is
R,

the characteristic function of a spherically invariant proba-
bility.
If P is spherically invariant, (4), (5) and (6) follow

from lemmas 1 and 2. .

1.5 - Exampfle :

The double exponential % e'k|x| is spherically invariant.

Indeed a straightforward calculation yields :
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a?u? a2a?
Y dux A -] x| A2 ® T T T
f elux se dx = —2 = I e e \? a da
- )‘3 +u2 0
The result is obtained by setting
a a?a?
au =) 2 I
3a (a)z=r? a e or
Az
yv) = and
Ao+ v
n 2
oy = (-1 (-2) .. (=n) —E2ur a
dv (A2 + v)
1.6 - Example :
-au?
$(u) = et e -M A >0 a > 0 is the characteristic

function of a spherically invariant function.

Define T by a -+

aZ
23 and v by v = nu o T .

-1

Since T is a bijection of ﬁ;

alu?
2

-

¢(u) = [ e
o

wida) = [ e
o

- 2
bau v (db)

Choose for v a Poisson law with parameter A. Then

a?u?
2

o(uy = [ e u(da) = e
(o]

1.7 - Example :
Student's law with n degrees
invariant.
Student's law is the law of
dent random variables X and R, the
mean 0 and variance o?

and that of

of freedom.

Thus the joint density f of

A (e

-au?

-1

of freedom is spherically
the ratio % of two indepen-

law of X being normal with

R being a x? with n degrees

X and R is given by :




n-1 1

—

2
exp - r_ (E)
203 [+ 02

x? 1

— exp - =
'/21! 2(72 n i -1
I‘(3') 2

fix, x) =

The characteristic function ¢Tof % can be computed di-

rectly. By definition one has

iu X

JurR o(u) =E (e B
x
iu — 2 l'l‘]
=/ [ e T ——exp-£% ! exp - — (§
27 20? % -1 202

r(lz‘-) 2

Applying Fubini's theorem, one gets, integrating over x,

_ulg? . S
-1
_ 1 2r? r, " 2¢? dr
¢ (1) ~m[ % — e ) e =
+ n
I‘('?:) 2
To obtain the usual form, of the characteristic function

set a 8 % ; this transformation is a homeomorphism of

19, =[, so that

Aidniieidetin
el ottt tiion

u?a?
2
¢T(u) I e 2 1 e 2a 321
\\4, 2-1 a
r(-'zl) 2 2

'
X

' RIS TR
N : -0 T )
NS L s o
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11 - THE CHARACTERISTIC FUNCTIONAL OF THE FILTERED POISSON

PROCESS

Let C be a spherically invariant random variable. We have

3 seen that its characteristic function has the representation :

atu?
e - e 2?2 gapia) where p is a proba-
Ry

a

(1) ¢ (u) = Efe

bility measure on (R+,¢L+)

s e et 2

Let Tj be the time of the j-th jump of a stationary

Poisson process with parameter .

LI T e v, Ty T

% * —— e Mt e e R e o B e - D

TN

As is well known for any fixed interval [a, b) the

number N of events 5 in [a, b] is a Poisson random variable

with parameter (b-a) so that

n
(2) P(N = n) = e-A (b-a) El(b;?)l

11.1 - Property

When N = n is fixed, the times ti1, 712, of

LR TN=n
intervals [a, b], are random and can be chosen independent and

dr

of same uniform law : b=a"

Finally, a jump at time 1, of normalized sized, has an

effect described by G(t, 7).

If we suppose the stationarity then ;
G(t, 1) = G(t - 1)

If we suppose the causality principle then :
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0 T > t
(3 Glt, 1) =

i Glt-T1) T ¢t

G is called the Green function of the process.

N
G(.-1)

[T

4 The filtered Poisson process is then defined by the

relation :

| (4) Veek z(t) & ¥ C.lw) Gt - 1))
jez 9 )

The Poisson process and the amplitudes Cj jed are
supposed to be independent.

In what follow, the following convenient notation shall

be used :

A
(5) Y Ter GT(s) 2 G(s) 1[0'T] (s)

110, T] being the indicator of the interval (O, T]

| 11.2 - Pnogoaition : If

(6) E(|c|) < = and

(7 f{ |G(s)| ds < =, then

+ ~ o -

2 (t) is integrable and E(|z(t)|) ¢ rE(|C]) { lc(s)]| ds
o

Proof : Since |z2(t)| ¢ 1} \cj\ |G(t-rj)i, one has
3

v
i _ e e e
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(8) E(|2(t))] < E(|c|) EC Y |G(t=t )]
je& J

An upper bound for E( | IG(t—rj)I) is obtained by consi-
b2
dering finite time effects represented by the expression :
(9) E( G, (t - t.)])
“‘ezzl'r 3|
GT(t - ;) is zero except for 15 in [t - T, t], so that condi-

tioning on the number of ry' s in [t - T, t] one has using

probabilities (2) and property (3) :

T _ar am® ¢
E( {Gnlt=1.) ) = e M A5 E(|G,(t-7.) |/N = n))
jZl T J nz1 n! jz1 T '3
® n t
- e AT ¥ (Agz n [ [G(t-1) | %}
n=1 : t-T

:
» [ |G(s)]| ds, so that
o

T
YTen E( |G (t=t:)|) = r [ |G(s)]| as
* jzt T J o

Taking the limit as T + », one has the needed result :

(10)  E( ) [Glt=t)|) = [ |G(s)]| as a
jez J o

We are going to characterize the temporal law of process 2.

To have a practical expression for the characteristic function of
(11 Ymew Yoy, £, oo, teh 228 e, 2t L, 2(EY)

further assumptions are needed, as follows :

(12) | |G(s)|? ds < = and even [ |G(s)|? ds = 1 and
o )

(13) [ a® du(a) < =
(o]

Since E(|c|?) = [ du(a) [ <? _l exp - % € g = [ a? au(a) €« =
w‘+ 1} /2" a a? m«
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(13) means that C has finite variance.
s a? a? s
11.3 - Lemma : [ |1 - exp - 5 G* (o) |do ¢ 5~ { G*(0) do
0o o

2
Proof : Consider f£(2) 44 - exp - & %r G? (0) then

2
g’% () = -azi G? (o) exp - 2 92— G2 (0) and
9' az 2 az 2 az 2
{’TG(o)exp-x—z—G(o)dx=1-exp-2—2—G(o)

At last, we take 2 = 1 then

LI 2
€ | 5 6 (o) exp - 2 5 G (o) A

a? 2
1-exp-—2—-G(o)
o)

L 2
¢ f & 6G'(o) dr = &-G¥(c) B
2 2 :
o
11.4 - Theorem :
If Z is the derived Poisson process :

(4) YteR  27t) = §  C. G(t - 1))
if (14) and (15) are satisfied :

j|c(s)|= ds < = and [ a’ du(a) < = then
R R4
c

‘MGN V(tl, t:' e o & p tm)é‘—’\m Vu= (u1' uz' e o) um)(‘"\

(14) ¢( u) & g(et<w 2 )

m
exp - A [ ds du(a) [1 - exp |~ %; ) u, G(tk+s)):}]
Rk, k=1

Proof : Without loss of generality, one may assume that
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m-1
b e | e — Y f— % L

T T, T, T T

By definition of the inner product and of zg,

([ =4

(15) <u, Zg> u; Z2(t;) + ... + uy Z(tm)
)

C. u G(t, - 1)

jez I k= Kok

[

as done previously the calculation is performed first for finite
time effect by conditionning on the number of jumps :
(16) <u, 20> = § c. T w ity - 10
T qez ks kKT K]
and we compute the characteristic function of this random variable.

Sv

i<u, zg>
(17) ¢ tu) 4 E(e )
E\
icC, u, G, (t, ~-1.)
- ® - n n L kT k]
= e M, o2 AT (XTE T El(e k=1 /N = n)
n:1 A Y

ar 2 oon® 0 a: - El2i (] uy G'r“:k"")’]n
= e 2 Y [f T ! du(a) e k J
nz1 ~T .
0 -a (} u, G(t, -1))?
ap N [ dram@ e 2 x K TK
= e e -T R,

T
=exp {- 2 [ drau(a) [1 - exp{- %} (1 u GT(tk*T))i]
o R, k

We will transform the exponent of the exponential ; let :

2
T - 2.} uG, (t +8))?
(18) WT(u) 4 log ¢T(u) z -~ A f [ dsdu(a) [1 -e 2 k k7T "k ]
0 m




- 15 -
and :
A m
(19) GG(S) = % u Gnlt, - s)
Then by lemma II.3 :
(20) / dsdp(a) |1 - exp {- 2 G2 (s) }] ¢ [ dsdu(a) al gi(s)
2 2 2 2 g
R+ l'\4'
f = ¥ w3
< dsdu(a) = u Gn(t, + s)?
il 2 ka1 k= TOK

2

m
[ dsdu(a) %T 1
R =

A

m
G(t, +s)? | u? <=
k xo1 k

k=1

+

So by the dominated convergence

T = 2 m
1im O dedun {2) vl-1 - evp . a ( ¥V o, e (. .+ s))z‘]
T 0 0 L ¢ ks kK B
® o a? m
= [ [ dasdut(a) [1 - exp {- 5 | ¥ u, Gle, + S))’}]
0 0 k=1

So we obtain :

m -
¢(u) = exp - A/ dsdu(a) L1 - exp - %; (Y u G(tk+s))’J
2 -
R% k=1
= exp - A j di (a) f ds [1 - exp - 5 ( § ukG(tk+s))’]
R, - k=1

because, for tk + 3 <0 or 8 ¢ - tk and so for 8 < 0, one has

G(tk + 8) = 0.

Furthermore since any translation on s does not change
the integral the assumption tv 8 tiv v .o WV tm = () is

not a restriction. nm
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Remark : The process Z as defined is real valued. It is however

very easy to define a vector valued process as follows :
+@

(21 z(v) = § c. Gle-t,) e R4

j=-0

Where G is a function with values in A9,

To obtain the characteristic function of %2, it is useful

to introduce some new notation.

Let u be the (gxn) matrix with entries uy 3 and 2
[
be the matrix with entries zi(tj).
Then, <u, Z > & trace ut z is the Hilbert-Schmidt

inner product for matrices.

One can then state :

11.5 - Theorem :

If Z is a filtered Poisson process with values in Rd

(22) VY teR z(t) = § cC. G(t - 1)
- jez I~ 3

and if IR lc(s)||® ds < = and /| a? du(a) < = then
R,
VmeN V(tl' tz, es ey tm)é \.km Vue‘kqu

e;L<u, Z> )

(23)  ¢(uw) 2 E(
exp - » [ dsdu(a) [1 exp-3- ? <u, ,G(t )>)‘]
- 0 = exp-3- Uy s +s
k=1 XK

Remarks : Formulae 23 and 14 yield the same result if in (14),
U, G(tk+s) is replaced by

<u,, Glt, + 8)> = ¥ u G, (t, +8)
k k 1=1,1,...,q 1k 17k

with the convention that |[|G(s)l}|? 4 <G, G> = Trace ct a.
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111 - CALCULATION OF THE MOMENTS OF Z
A new process Z with characteristic function
i<u,z >
stu) = (BB (B1)seeoruy 2(eR)) g )
al ]
(1) = exp-» /| ds du(a) (1 - exp - 5 (1 u, G(tk+s))’J
iri, k

is useful if it is different from the usual ones, Poisson proces-
ses, spherically invariant processes,and more accurate to some

applications.

The aim of this section is to obtain the moments of Z. To that
end it is assumed that Z has moments of all orders and that ¢

is analytical at the origin.

(2} ptm)

5.2 0t) + 777 +u_ 2t NE
m n

"
p
We--8

= | = El(«u, z?,>k)
= * S

The explicit expression for ¢ shows that ¢ (u) is a func-

tion of the square of <u, GC>(S) defined by :

(3) <u, GS>(S) 4 % u, Gty +s)

111.1 - Lemma : The odd moments of Z are equals to zero.

Prood : The series expansion of the exponential function yields :

2p
a? s a2 P <u, Gg> (s)
(4) 1 - exp - = <u, Gc>' (s) = - 921 (- 1r) 1
so that
2p
» p.<u, Gg>°F (8)
(5) ¢lu) =exp + 1 [ dsdula) § (- 35 Bl

RIR’. p-1
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Finally this last exponential can be expanded to yield

a new series in the variable [ ds <u, Gy>* (s) where each
R
term is homogeneous in u and of even degree.
The odd moments which are the coefficients accompanying expres-
. i
sion of the form ui® ui? ... u ™ with i + 1, + ... + i odd

vanish. »

It is now convenient to introduce the second characteristic

function ¢ (u) :

(6) v(u) & log ¢(u) = = A dsdu(a) (1 - exp - a: <u, G_>%(s)
2 G

L

(1-6(u)) 9

111.2 - Lemma : y(u) = - §
q=1 q
; Proo§ : wilu) = log ¢lu) = log [1 - (1-e(u))] and for
{ 0 < e <1
- e? ed
| log (1 = ¢) = (e M oL SRR —§—+...) L
|
, Y © L+
' - : - - 175 (=1 22 ]
j: 111.3 - Lemma : ¢ (u) qz1 3 ng1 7T E (¢u, 2 >°7)

Proog : Since the odd moments of Zgvanish, the expansion of ¢

{ yields :

E (<u, 2,>°%) so that

4

{(7) ¢ (u) =

m )
. -1
| lz (-1)

o (22!

(8 1 -t = ) 1§51§i:1 E (<u, 3>°Y) »
= ’
p=p (20N
Comparing the two expressions for ¢ given respectively

by Lemma III.3 and the relation (5), one obtains the moments

of Z. One has :




Bt o, Lo ) e

. o Eal o
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w® ® L+ q
1 (- 1) 20, (9 _ .
o - Lg L S s ’l S e
™ 2 P
v S %T [ au(a) (- 3 [ ds <u,6 >*P(s)
p=1 R, R !

We consider first the coefficients of u%‘ uz? with i, + i, = 2

to compute moments of second order.

111.4 - Proposition : Yt E(z(t)?) =i [ a’dula) | G(s)? ds
R R

+

Yt,, t; € R E(z(t1)Z(t,)) = Af a*du(a) [ G(ti+s) Glty+s) ds
IR

. IR

Pnooﬁ : One must have
(-1 '

71 >) =

- % E (<u, 2

&

1 a? 2
» — [ du(a) (- =) [ ds <u, G (s)

e

Using the respective definitions of <u, 2> (II.15) and

<u, GG> (3) one obtains

(10) E(UIZ(tl) + \_IZZ({:I))2 =

A [ a*duta) [ ds (u,G(t;+s) + u:G(t,+s))  and equating
R+ R

the coefficients of uil, u: and u,u,

E(Z(t;)?) = 2f a®’du(a) [ ds G(t,+s8}? =
R+ R

Af a*du(a) [ ds G(s)? = E(Z(t;)?)
L R

and

E(Z(t;) Z(t:)) = » [ a*du(a) [ ds G(t,+8) G(ta+s) =
s R
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¢ ltn) 6(tva)

-ty t, 0 -t A

If t; < t,, the integrals [ ds G(t;+s) G(t,+s) and
R

| ds G(s) G(t;-t,+s) are equal.
0

The next proposition lists the moments of fourth order.

[11.5 - Proposation

1) E(2(t*))=3x [ a“du(a) | dsG"“(s)+3)? [[ a’du(a) [ dsG?(s)

IR, R, R, R,

2) E(2(£1)%2(t2)?) =32 a“du(a) [dsG? (t,+5)G? (t,+s)
iR IR

+

+ A’[ | a*du(a) [ ds G(s)’]:

R, R,

+ 2 2 Lé a’du(a) [ ds G(t,+s) G(tus)]2
R
+

3 E(z(t1)2(t2)2(t;) 2 (t0))

= 32 | a“du(a){ ds G(t1+8) G(t2+8) G(t;+s) G(t,+s)
R
+

+
N -

+

)

2
A? [ f a’du(a)] ds G(t +8)G(t, +8) ] ds G(t,+8) G(t,+s)
R zé i b lg k L
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where the summation is over all permutations (i, j, k, 1) of

(1, 2, 3, 4) such that i< j and k < 1.

Proof : The first terms in the expansions of ¥, formula (9)
are restectively, for :
(11)

2+1 1

[ -
- 1 (-1)”‘l E(<u,z _>%) + =0 E(<u,z >*) + ... +
q=1 == | - Y] 7
1 2! ¢ v
L 4
[ 1+1 2+1 2
1 -1 -
q = 2 - -2- -(_%—- E(<u'zz>z) + (—1—)T—_ E((U,ZS>“) + 00-1 + 0

Equating the homogeneous terms of degree 4 in u, one obtains :

(12) %T E(uiZ(t,) +up2(t2) +usZ(t;) +u 2 (ty)) " +

(13) -% [21—! E(111Z(tn.)+112Z(1:2)*"\13Z(t3)"’l-luz(tu.))’]z =

1 4 \
(14) X 77 / %r du(a) | ds[ulc(t1+s)+uzG(tz+s)+u;G(t,+s)+u~G(tu+s)]

This yields, if ti =t, i=1, 2, 3, 4

|d

L - 1 2 2
E(Z({t)"') = T3 E(2(t)

o+

!
+ 2 5—%—1-[ a* du(a) [ ds G“(s)
The first term on the right hand side is given by

Proposition III.4

In the case of t; = t; < £, = ¢,
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2
ar Cv E(Z(t1)? 2(t,)?)=

N =

2
(3) [ZE(Z(tx)’)E(Z(tz)’) + 2’(E(Z(t1)Z(tz)))’] .

1 2 N
A 3T C, f%r du (a) f ds G? (t,+s) G? (t,+s)

4!

(21)2
is given by Proposition III.4.

where C? = . Again the first term on the right hand side

The case of t; < t, < t; < t, is more complicated. For any

random variables xi and real number ui, i=1,2, 3, 4, one

has that :
T 2
(15) LE(ulxl + UxX; + u3X;y + u,X,)? =
rR(11§Y§ + nixi + niX% s urx?) o+

2E(U1U2X1X2 + ujuslX;X; + ujuX;:X,.
+ uu3XX3 + uzulX:X,

2
+ Uauuxaxu)]

. 2
} ui [E(x;*)]

+ 4 u,u, u.u [E(x X.) E(X, X )]
1<j2k<2 173 ke 173 k2
and (i,3) # (k,2)

+ 2 z ui uu, [E(Xi) E(xkxl)]
k<t

EA SR




e I U

ce———
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The pair [(i < j), (k < 1)] is not orderdso that there are

6 x 5 such pairs. The same is true for the pairs
[(1), (x < 1D].

One then equates the terms containing u, uj u, u1 with

(i, j, k, 1) permutation of (1, 2, 3, 4) and i < j < k < 1;

there are only six such permutations and

Fr 4! EZ(t)) Z(ts) Z(t;) Zlt;)) =

—4 L Bzt z()) E@(y) Z(e )] +
2 x 2% | i<j, k<1 J
(i,j,k,1) a permutation

v 2 21 Qua) [ ds 4! G(t,+5) Glt,+8) Glt;+5) Glt,+s)
LA R

For the summation y one choose i < j among 1, 2, 3, 4
i<j k<l
and (i,j)#(k,1)

and k < 1 are the two remaining integers. »

Remark : One could also compute other moments such as

E(Z(t;) 2(t,)? Z2(t;)) and E(Z2(t,) Z{t,)?) but these are of a

lesser interest.
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1V - TDENTIFICATION OF THE GREEN FUNCTION G

Given some experimental data, one may assess the adequacy
of the model and in case it is satisfactory, to estimate the
paratemers which are the Green function G, the parameter A of
the original Poisson process and the mixing law u for the ampli-
tude C. In this section, an estimation procedure for G is pre-

sented. Estimation of » and u is the subject of the next one.

Statistical estimation based on one trajectory of the
observed process requires that the process be strongly statio-
nary which is the case for the process Z. Its characteristic

function (theorem II.4) is indeed invariant under translation

of the time variables.

The covariance T of X(t) and r, of X?(t) are stationary

and given by the reilation :

(1) r(n) 2 E(z(t)z(t-1))= 1 [ a*dula) [ G(s) G(s+1) ds

R, R

1>

(2) r 2 (1) E(22(t) Z?(t-1)) =

2
3x [ a*du(a) | ds G?(s) G*(s+r) + {xf a’dufal £ds G’(s)]
R )

R, IR +

2
+ 22 Lé a?’du(a) [ ds G(s) G(s+r)]
R

+

In (1), » [/ a*dula) is a normalization factor and,

R
assuming (II.12) one has r(0) = A [ a’du(a).
+

*® sisf T
IV.1 - Proposition : Let g(f) & [ e*'5% G(s) ds = ! (G). Then

te  -isf
(3)  r(r) =1(0) [ e |g(n))r 5
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g is the Fourier transformey)of G, hence the notation
g =j7(C). It is square integrable and vanishes for s < 0 ;
one defines (cf I3], p. 30) its analytical exten-

sion g(f + ib) by the relation

® ois(£+ib)

A
g(f + ib) = | G(s) ds b >0
AND 0
w g is said to belong to
g the Hardy space H2+.
0 f

Proo4 : Taking the inverse Fourier transformej"_1 of g, one
gets :

~ _ +oo o
(9 cts) =T qai(s) = - [ e gie) ar

In (1) the integral in s, is in fact, a convolution in s, let

(5) G'(r) 8 G(- r) then
(6) [ G(s) G(s+t)ds = [ G{(s-1)G(1)dr = [ G'(1-s)G(s) ds = G'* G(1)
['§ R R s

With self-evident notation, we know that :
7 - T’
G't G T (G e T

+co

But, by definition g(f) & T c) = [ &St g(s) as,

+o
37(;'(f) = | e!%f G(-s) ds, consequently

and gf) =
(7) r(z) = ro) [G' : G] (1) =
1 -isf
rQ) = [ e S g(f)|? af  »

This result shows in particular that the gain |g(£f) |

of the causal filter G can be estimated when an estimate of the
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covariance I' is available.

It is a standard procedure in automatic control to

recover the response G of a causal filter from its gain |g]j.

There is however a difficulty which can be illustrated
with the example of a rational filter G whose Fourier transform

is given by the relation :
(f - by) (£ -Db2) ... (£ - bq)

(8) 9 = FoEy E - a) .. - ay) prq €N

Since G is causal, g is entire in the upper half-plane

R+ so that the poles ai, az, ..., a, of g belong to the lower

half plane R_.

+o .
Since G(s) = é% [ e 'fS g(f) af is assumed real and
then
: +o , +oo .
i . cier . Voo tifs J(£) as - A LTS TR ae ua
% l Al B 2TT J N - - 2" J— bt DN - - -

o

‘ . (9) g(f) = g(-f)

(9) shows that b -b are simultansously zeroes of g

5 ! and a - a simultaneously poles of g.

‘ Let b, be a zero of g and define g' by the relation :

(£ - b)) ... (f - bﬂl £ - bi

g'(f) = = - X ==
(f -a;) ... (¢ ap) £ -b,
i g' is a frequency response such that |g'(f)| = |g(f)|. If f is
x £f-b
! real, f—:—si has modulus 1 and is called an interior function
i

(cf [3], p. 36).
f - b1 f+b
Multiplying (8) by F-5 " . one obtains the frequency
i f +b
i

response of a causal real filter.

Thus |g| does not uniquely determine G and the question

arises as to the best choice of G.
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v.2 -~ Deﬁinition : A causal filter G is said to have a minimal

phase if % is the frequency response of a causal filter.

. For a filter with minimal phase, the zeroes b of g have
to be in the lower half plane and the following result obtains

([3]1 p. 37.

IV.3 - Proposition : The gain |g| determines the causal, phase

minimal filter G.

In fact, the frequency response g of this phase mini-
mal filter G has an analytical extension in the upper half

plane given by

i !
(1) g(g+ib) = exp - [ LR T 10 9(:)1 dy
Y +

This expression may be used tc avproximate al(f),

felkR ; for

jo

f log |g(y)lay
(Y'f) 2 + ba

+ = f [‘f =) + —XL-} 1og la(y)| ay
(y~-£f)2?+b? y2+1

log g(f+ib) =

=S

[ =

3

and thus
p bylealaly, as_ yo5 jgun) (]3] p. 37)
(y-f)2+b?
i1) 2 { (£=y) Y] log {g(y)| @y 22, arg gtf)
(y-£) 2 +b? ¥+
. ([3] p. 38 and 57)
'{ When b small this last integral gives an approximation
'f ' of the phase Arg g{(f) of the uniquely determined, causal,

minimal phase filter G.

G can be also approximated directly. For b > 0, define

‘ % Gb by the relation
T e I , el

W e i
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+o

1 -if
R

({[~4

(11) GP(t) t g(f+ib) af

Since g(. + ib) converges in L?* (R ,@», df) to g(.) as b goes
to zero ([3] p. 30) and since the Fourier transform is an isometry
in L? (R, R, df)

4+

b 1
(12) G(t) = 5= [ dfe

-co

-ift

1 y(£+ib)+1 log lg(y) ]
exp [I; [ y-(£+ib) y2+1 dy

converges in L? (R, &, af) to G(t), as b goes to zero.

(13 log lg(y)| dy exists for functions g in n2*,

v+ 1
The desired approximation Gb of G requires that the Fourier

transform of a complex function be obtained.

In conclusion, the correlation function T (v) determines

the causal, phase minimal filter G which can be estimated.

The same is true for I, (t) as defined in (2) :

ra(t) = 3x f a‘du(a) [ ds G*(s) G?(s+1)
R+ R

+ I(0)?* + 2r(r)?

Up to a normalization factor 3A [Ra“du(a), one has an
Y4

estimate of [Rds G (s) G*(s+1). This function of 1, also yields
W

the gain, denoted [g,(.)| of the causal filter G? and one may

compute from this gain |g,(.)|, the response G* of a causal,

phase minimal up to a normalization factor.

If the two estimations of G?, the first based on the mo-
ments F(t) = E{(Z(t) Z2(t-t)) and the second based on the moments
r(r) = E(22(t) 2% (t-1)), are equal,nearly equal, one can safely

accept that G is indeed a deterministic function.
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V - TDENTIFICATION OF ) AND u

Here the Green function G is supposed known and the aim is
to estimate the unknown parameter X of the indurlying Poisson

process as well as the mixing law p determining the law of C.

Having assumed in part III that the characteristic func-
tion ¢ of Z can be expressed as a known series whose coefficients

are the moments of Z, the relation

ne-18

) ) 2p (- 1P
v(u) = Log ¢(u) = u® ——— A [ _2p du(a) ﬁ‘G(s)ZP ds

p=1 2P pt R,

should yield, after proper truncation, estimate of 2 and u in

terms of the moments of 2.

The problem can thus be stated as that of determining

A and u given the equalities

(1) » [ a’P au(a) = a P =1, 2, cuus 2
R P
+

where a is known, O is obtained by dividing the coefficient

of u’P in the expansion of v by (- 1)P 2P pi f G(s) P as
iR

Such a problem can be restated as a classical moment

problem ([1]). Indeed if 4 is symmetric probability measure on

N,
it
(R ,®) such that E/R+ = % u the problem at hand becomes that

of finding i such that ¥ke N :
2k 2k
a dp = a dp = a
Iﬁt \{ k

+

[ a2k+1 ar = o
1}

The procedure is as follows. Orthonormalyse the sequence
of functions {ak ; k€ Nu (0}} in the Hilbert space

L (R, &, ﬁ) in order to obtain a sequence of orthonormal polyno-

mials {P, ; keMNu (0}}.
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We recall the results about these orthogonal Polynomials

as shown in [1], chap. I

Let :
(2) Sy 4 a* a(a) moment of order k of g
Sy S) e Sk
51 s2 LI Y Sk+1
(3) p, &
k cee eee e cen | | denoted the determinant
Sk Sk+1 S2k
For the family {Pk ; ke N u {0}}, these relations are
valiad :
So S) c oo Sk
51 52 e e S
(4) P (a) a = —L k+1 1 ana
¥ Dy, _,Dy
ah ah+1 . ah+k
(5) ap, (a) = b1 Pr_q(a) + a, P, (a) + b Py ,q(a) where

(6) b, =0

-1

(7) a = [ alp (a)l * dita)

R

——

VPy_y Dyuy

(8)
Dy

b, =

V.1 - Proposition : If || is a symmetric probability measure

on (R,®") then

VYew Yae R
Py (- a) = B, (a)
Paker (= @) = = Py, la)




Puooﬂ :

Po(a) =1
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and one proceed by induction.

Since a and PZk(a) are orthogonal by construction

ay, = [ a |P2k(a)|’ du (a)

a Pyla) = by 4 Pyp_q(a) = by Porig

(- a) = El_

P
2k +1 2%

. s - v -
similarly a,, ., = [ a [P, ,,(a)]® akla) =

a Pypsqpla) = by Poyyla)
Pake2 (™ 3) = Pyyp(al
v.2 - Coaollang
:
1 S2
P, la) = —1——
¥ D, D51 o
1
1
P.. . (a) ! 5
a B ————————
2k +1
VD2k+1P2x .-
a
Paooﬂ :

+
Pak

n
S, .
S, .
al
Sz .
Su .
a’ .

0, so that,by (S5),

(a) and

[‘ a PZk(- a)- b2k-1 pzk_1 (- a)] =“P2kb+1 (a)

0 so that, by (5),

sz*z(a) and hence

2k
Sak+2

2k-1
e Dok +1

a P2k(a)

One integrates at sz(a) with respect to 3 and clearly

P,, (a) is orthogonal to 1, a, ..., aZk-1

and similarly
2k

P2k41(a) is orthogonal to 1, a, ..., a“ . »n

Since only a finite number of moments 1S avalaible, u

can be determined if it is a finite convex combination of point




l
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Let thus p be defined by the relation :

(9) B o=, 601 + U, 602 + ...+ “zsoz where

(10) u1=uz + ... +u =1 u1>0 LIy u">0-

The equalities 1 | a%P gy = oy then become :
R 4

AMuy 01 + uy 02? + ...+ u, 0,?) = oy

Alpy 01272 « Ba czz-z ..+ u'!, 02,:.2) = a,

(11)

}‘(ua 01:-:2 T azz-:l,,, cee + 1 azz-:l?.) =

) = G2y

There are as many equations as there are unknowns.

V.3 - Remanrks : When & is symmetric, the odd moments vanish.
One writes 4i equalities bul 21 comes from cdd momente or from
symmetry.

The last equality for the odd moment is [ at*"? aia) = o.

The last relation ) {Ra42 d&(a) = a,, does not appear in the

classical moment problem.
We propose to compute u from the 24 first relations and
after to obtain A from the last one :
42 _
xﬂ{ a’” dula) = a,,

In fact, we will eliminate the unknowns uyr 9y
i=1,2, ..., ¢ of the system (10) (11) to obtain ) directly

from the !

Once ) is known, one has the usual moment problem.




(12)

- _
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V.4 - Proposition : Let u = .{ wy 8, ; and
i=1 i
2k
Sy © { a“" au(a) k an integer. Then
R+
S2k+2.0 S2k+2 " S2ke2e
Sak+2.1 S2ked "ot S2ke2e42|
S2k+22  S2k+21 " S2k+4y
This determinant has 2 + 1 rows.
Proog : The proof is written for the case of & = 2. We start from
M1 + By =1
2 2
MWy o1 + U 02 = S,
. u
W1 Oy + B3 0 = Sy
6 6
M1 0y + U, 0, = Sg
These equations are linear in p;, H,, the first two determine
1, 42 and the other two must be consistent.
1 1 1
0,2 022 Sz = 0 and
c1* g2 s,
012 ozz S2 1 1 S2
2
01“ 02“ Sy = 0 022 LB 022 S = 0
0,8 028 S¢ 61 02 Ss
1 1 1 82
Let V1 4 0, V, ¢ 622 and S° & 82 5 4 8,
o1 02" 8. 8¢




- 34 -

S, and S; both belong to the span of V, and V, and any |

other vector in this space is dependent on S, and S;. This is

the case of

Sy
S, 8 Sg since the relation ;
Sg - 3
u101° + uzdzB = Sg yields %
01“ Gz“ Su 1 1 S
0,8 P Se = 01“02“ o2 022 S6 = 0
o1° g2 Ss 01" o2 " Ss
1
So finally ]
l1 S32 S,
S2 Sy S¢ = 0
:
S Sg Sa
Starting from the eguations
uxO% + u2022k = sZk
u10§k+2 + u2022k+2 = s2k+2
H1°¥k+8 + u2°22k+8 = szk,e
A similar result is obtained, that is
S2x S2k+2 S2k+4
Sok+2  S2k+4 82k +6 = 0
S2k+4  S2k+6 82k+8

The generalization for arbitrary 2 is obvious.®




| R
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We next show that A which appears in (11) is the solution
of a linear equation.

Indeed by dividing (11), by i, yields

|
|
|
|
;
:

+ + L.+ =
u1 u2 Wy 1
2
w1012 + pag? + ... wpo,? = %} 2 s,
[ cerenae
¥ 42 40 %2 p
HiOr ¥ M202 v ... b0, = ST 5S4
; and by proposition (V.4), one has
F 1 21 2
X .o X
a
3% a2 241 =
E ) 3 vee ) = 0 or
it} %g+1 *22
3 - cee T
!
| . A a1 ces a,
; ay as ces a1 = 0 which can be written as
; a linear equation as
; % RS B %21 follows :
i
‘ 0
a2z .o u£+1 @y e az
(13) A o0 ® ae e = -. a3 a2 LY Gl+1
‘ « .. « .es cees
\ +
i e+l 22 a, Foeq °°° a22

Remanks : If u is as above, there are relations between the

ap's which must be satisfied because of proposition V.4

For example, one must have :

a L AN a
a1 2 L+
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If these relations are not satisfied where calculations
with experimental data are carried out, one must chose a larger

value of t.

The gaussian case is associated with the value £ = 1
2
and the equality aja; - a,? =[a*dp [ a®du - I[ a“dul = 0.

Thus one must compute moments of order six.

Lo T N . .
When u is a convex combination of point masses, the

Hilbert space L’(W~+,R,+,'a) can be characterized, indeed

V.5 - Proposition : If ﬁ is a convex mixture of 2 dirac, the

Hilbert space L’(R+,G% ' ﬁ) has dimension 2¢.

+

Proo4 : By corollary V.2, one has an explicit expression for

Py ¥hith ig orthogonal to 1, a2, ..., a2t-1
1 S2 ces e 522
_ 1
le(a) = S2 Sy ceran Sog 1
VDZQDZL-1 ® ® o * o e a o ® s " . & o
1 a? ceses azl
1 S, e S5,
S S . e 822+2
2L A
Moreover [ P, ,(a) a“"duta) = [... ... ... cee = 0
S5 S2¢0+2 0S4y

by proposition V.4. With respect to the measure u, one has

flpzz(a)I’ du(a) = 0 and P, 1is linearily dependent of 1, a,

ceny 822-1.

The same occurs for le+1 and more generally Yk > 0 for

P

20+k° M
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Thus P,, is a linear combination of 1, Pov evey Pya-1

but le is useful for the identification :

V.é - Proposition : The roots of P,, are precisly

+ g, 2 02 eeaey tcl
Proof§ : The proof is again written for the case of & = 2 :
one has :
1 S, S,
P, (a) = S2 Sy Se
1 a? a"
2 3 [
M1 + U Uy 0y +u2022 U101 +uz02
so that
But P, (0:) =
o " 6 3
U1012*U2022 U101 +u202 U101 +u202
1 012 g "
L
u2 uzoz2 H202
2 u 6 =
Py(01) = (w20, Y202 U202 = 0
1 012 g1"

The general case is similar. ®

Once the polynomials P,, P;, ..., le_1 are known the values

of u, follow k =1, ..., ¢ since ([1] p. 22).

1

]
7 My 2§
i=0

-1
|Pi (ck)l‘

An other solution to compute By k=1,14, .., 2
would be to consider the ¢ first equations of system (10),

(11) since » and o;, ..., o, are yet computed.




In conclusion, when it is assumed that C has a spherically
invariant law rather than a Gaussian law and when the mixing

term 4 is a convex combination of point masses

p= ) u, 8  , we can adjust the moments of C with the expe~
k=1 k

rimental moments of C till order 4:-1, and using the extra
parameter X of the Poisson process equalities hold till order
42. The extra moments of order 4f2+k are determined by the
shape of n (see proposition V.4) but there is no more moments

to check discrepancies between the chosen model and the experi-

mental data.
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